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A Chebyshev polynomial method proposed previously was used to study the spectral 
properties of a non-self-adjoint Sturmian eigenvalue equation encountered in Quantum 
Scattering theory. A study of numerical convergence behaviour showed that improved 
convergence occurs for solutions corresponding to potentials which change sign in the interval 
of approximation. Continuous variation of such nodal potentials leads to migration of 
eigenvalues in the complex eigenvalue plane and to growth of new branches in the spectrum. 
A numerical stability study evaluated the performance of three commonly available subroutine 
paths for the complex general matrix eigenvalue problem which results in the present 
method. ( 1987 Academic Press. Inc 

I. INTRODUCTION 

The spectral theory of self-adjoint operators has developed through the use of 
ideas centered on the theory of linear operators in Hilbert space [ 11. The impor- 
tance of self-adjoint operators is due to engineering and scientific applications 
where the spectrum is on the real line [2]. However, investigations in Quantum 
Scattering theory [3], Transport theory [4] and Hydrodynamics [S] lead to the 
study of differential and integral operators which are not self-adjoint. The spectral 
theory of non-self-adjoint operators is still a relatively young subject [6] when 
compared to the self-adjoint case [7]. Recently mathematical treatises on the 
theory of non-self-adjoint operators have appeared [8,9]. 

Numerical studies of algorithms for non-self-adjoint operator equations are 
important from the point of view of applications because they establish stability (or 
lack of it) of discrete approximations to such equations. In a previous com- 
munication [lo] a non-self-adjoint second order differential equation, which arises 
in Quantum Scattering theory [ 111, was solved by introducing a set of polynomial 
functions spanning a Hilbert space defined by an inner product with the Chebyshev 
weight. Approximations to the solutions of the differential equation with such a 
Chebyshev set (on a finite interval) is expected to show convergence. This is 
because the polynomials with complex rational coefficients are dense in the space of 
functions solving the differential equation. The method of [lo] showed satisfactory 
convergence for both eigenvalues and eigenfunctions, but substantial improvements 
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in efficiency are possible. Also, the previous work studied only the case of potentials 
of constant sign, whereas realistic physical models [ 121 have potentials which 
oscillate in the interval of approximation. For this reason the present study has 
investigated further the convergence properties of the Chebyshev set and the R 
algorithm of [lo]. In the course of the investigation important discoveries were 
made relating to the spectral properties of the non-self-adjoint Sturmian eigenvalue 
equation. Improved convergence was found for solutions corresponding to poten- 
tials which change sign in the interval of approximation. Continuous variation of 
such nodal potentials leads to migration of eigenvalues in the complex eigenvalue 
plane and to growth of new branches in the spectrum. The method of [lo] leads to 
a complex general matrix eigenvalue problem and a recent survey [ 131 found “very 
little in the way of proven techniques” for such cases. This situation and also some 
serious numerical problems in the present work suggested the comparison of 
numerical stability in different subroutine packages. 

Section II discusses the method, Section III describes the eigenvalue spectrum, 
Section IV investigates the L, error for the eigenfunctions, Section V discusses the 
question of numerical stability and Section VI summarises the conclusions. 

II. METHOD 

In operator form the equation to be solved is 

Av=ccvv (1) 

and is described in detail in Section II of [lo]. In Eq. (1 ), A is a second order dif- 
ferential operator with terms containing a complex potential V, and the usual term 
in l(l+ 1 )/r2, where 1 is the (integer) orbital angular momentum. In Quantum Scat- 
tering theory applications [ 111 the boundary conditions are that the solution is 
regular at the origin and has “outgoing waves” asymptotically as discussed in 
Appendix A of [lo]. For this choice of boundary conditions Eq. (1) is a Sturmian 
eigenvalue equation and the solutions form a discrete sequence of complex 
functions v,~(T) ordered strictly according to increasing magnitude of the complex 
eigenvalues IY~, j = 1, 2, 3 ,..., for each 1. The complex potentials V,(r) and v(r) are 
considered to be negligibly small at some radius r = a, where, for all j, the ~,~(a) 
satisfy the boundary condition Eq. (A3) of [IO] and are normalized according to 
Eq. (29) of that reference. A short history of the occurence of Eq. (1) in Nuclear 
Quantum Scattering Theory is to be found in [14]. It appears that in nuclear 
physics there has so far been no investigation of the case that either of the complex 
bounded potential functions of Eq. (1) oscillates in the interval of approximation. 

In the method of [lo] the solution vu(r) is expanded in a series of even 
Chebyshev polynomials on the interval Y E [0, a] 

ali = .‘,?(Y/2)‘+ ’ f’ hjl(a) T,,,(x) (2) 
II = 0 
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with the prime indicating that the first term has the factor f and where r=ax, 
x E [ - 1, + 11. The solution u!, is approximated by truncating the summation of 
Eq. (2) at some n = N,. Application of the boundary condition at r = a shows that 
only coefficients for n = 1 to N, are linearly independent. The latter are then 
solution vectors of a complex general matrix eigenvalue problem of the form 

Rb’ = cqHb’ (3) 

as described in Section III of [lo]. 
Applications where both R and H are real symmetric [ 151 or real banded [ 161 

matrices are not uncommon. But in the present work both matrices R and H are 
complex and non-Hermitian while only H is symmetric. In [lo] Eq. (3) was solved 
by Algorithm R, which assumes the existence of a Cholesky decomposition for H. 
The present work investigated the convergence behaviour of the R algorithm as v 
in Eq. (1) was varied in a range typical of realistic physical potentials. Variation of 
B reveals differing numerical convergence properties of the R Algorithm and even 
loss of numerical stability in some eigenvalue-eigenvector subroutines. Therefore 
three different numerical methods of solving the complex general eigenvalue 
problem are compared in Section V. 

A deficiency of the method in [lo] is that the Chebyshev expansion coefficients 
of V, and P must be computed by quadrature. An alternative approach is to choose 
analytical forms for which the Chebyshev expansion coefficients are either known in 
closed form or may be computed by recurrence. An appropriate choice is the form 

Ve my2r2(cn + cI r* + c2r4) (4) 

with r = ax. Following Luke [ 171, the Chebyshev expansion of N,. + 1 terms for the 
Gaussian factor is 

The coefficient E, satisfies the four term recurrence (pp. 35, 313-314 of [ 171): 

i4b+ 1)) En= i-(n+3)l(n+2)+4nl(y4u4)) En+l 

+ In/b+ 1)+4(n+3)lb4a4)j E,,, 

+ b+3)i(fl+2)) Ed+,. (6) 

The constants in Eq. (4) may be adjusted to give potentials approximating closely 
Woods-Saxon forms of the type discussed in [lo] with the numerical advantage 
that the potentials V,(r) and p(r) will approximate zero very closely at a suitable 
truncation radius r = a. The important advantages of the recurrence (6) are that the 
coefficients are generated with a high degree of precision and that they decrease 
very rapidly in magnitude as n increases. Typically, with 35 terms in the Chebyshev 
expansion for (4) accuracy of 16 significant figures is obtained on an interval 
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r E [0, 8.38 fm] for the choice of parameters discussed here. The importance of the 
substantially improved accuracy in a recurrence method is that it makes for easier 
detection of accumulation errors in eigenvalueeeigenvector subroutine packages. 

A useful feature of potentials of the form (4) is that a node may be introduced at 
some r,, E [0, a]. Since oscillatory potentials are typical of case studies from Nuclear 
Quantum Scattering [ 121 such potentials have been studied systematically in the 
present work. The parameters used in Eq. (4) for those cases discussed in Sections 
III and IV are summarised in Table I. 

III. THE EICENVALUE SPECTRUM 

The eigenvalue spectrum of Eq. (1) was computed by the R-Algorithm of [ 10) 
for cases Pl to P3 and Ql to Q12 of Table I. All calculations reported here used the 

TABLE 1 

Potential Parameters for Cases PI to P3 and QI to Ql2<’ 

Real part Imaginary part’ 

Node V *, (‘0 (‘I V 
Case’ (fm) (MeV) (fm ’ ‘1 (fm 7 (fLy4) (MeV) (f: ‘) (fz’ ‘) 

Pl 

P2 

P3 

Ql 

V, none ~ 52.5 0.46106 
P none - 52.5 0.46106 

V,) none 
P 2.50 

v,, 2.50 
V none 

-52.5 0.46106 
~ X3.1 0.445 

- 83.3 0.445 
PO.53552 0.4909 

V, none 
P 5.19 

5.21 
4.61 
4.03 
3.70 
3.39 
3.08 
2.78 
2.50 
2.24 
2.00 
1.78 

- 50.0 0.49754 
-83.3 0.39 

0.40 ~0.01080 
0.41 -0.01375 
0.42 -0.01849 
0.425 -0.02187 
0.430 -0.02617 
0.435 -0.03168 
0.440 -0.03875 
0.445 -0.04783 
0.450 -0.05956 
0.455 -0.07472 
0.460 -0.09436 

0.48 
0.48 

0.48 
0.3 

0.3 
0.0 

0.5 
0.3 

0.14 
0.14 

0.14 
-0.04783 

-0.04783 
0.0 

0.15 
- 0.00894 

0.0 PO.53552 0.4909 1.0 
0.0 PO.53552 0.4909 1.0 

0.0 -0.53552 0.4909 1.0 
0.0 0.0 1.0 0.0 

0.0 ---0.86337 0.55292 1.0 
1.0 -0.53552 0.4909 1 .o 

0.0 
0.0 

(’ The form of the real (or imaginary) part of the potential is Ve T”‘(c.o + c,r’ + czr4). 
’ In all cases co = c, = 0 with no node. 
( Cases Ql to Q12 all have the same V, and no imaginary term is included for either V,, or t?. The 

location of the node is given in units of fm in parentheses. 
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kinematical parameters of [lo]. These correspond to the quantum mechanical 
description of a 15 million electron volt (MeV) neutron scattering from I60 in the 
laboratory coordinate system. In Eqs. (4) to (6) of [lo], values of the constants 
used were: wave number k = 0.7972152 fm ‘, center-of-mass energy E = 14.11 MeV 
and 2p/fi2 = 0.045018 fm ’ MeV ~ ‘. The truncation radius was a = 8.38 fm and the 
abbreviation fm denotes the nuclear physics unit of length, namely, the Fermi. 

Case Pl was chosen to closely reproduce the shape of case five from [lo] near 
the point of inflection of the real part of VO. The resulting real part of Pl was 
approximately 2 MeV deeper than the Wood&axon form at Y = 1 and 4 fm. The 
corresponding imaginary part was slightly broader than the WoodssSaxon 
derivative form of case five [lo]. In view of this choice of potential parameters the 
eigenvalue spectrum of Pl is very similar to that of case five of [lo] and the con- 
vergence properties are also similar, as will now be discussed. Convergence 
behaviour as a function of matrix size was measured by plotting the magnitude of 
each eigenvalue as a function of the matrix order required for convergence to four 
significant figures. Such a plot is important in assessing how large a matrix is 
required to ensure convergence of all complex eigenvalues lying inside a circle of 
prescribed radius in the Argand plane. The points in this plot tend to cluster along 
a line and convergence is measured by the slope of the line. In Fig. 4 of [lo] for 
case five, and also Pl in the present work, this slope is 2.7. 

Potentials of the type PI, or case live of [lo] (see Fig. 5 of that reference), all 
have eigenvalue spectra consisting of one branch extending away from the origin 
into the fourth quadrant of the complex eigenvalue plane. However, the character 
of the spectrum changes if v has a node, and consequently changes sign, inside the 
range of V,, which is a situation typical of some realistic physical cases [12]. An 
example is case P2, where V, is the same as used in PI, but P has a node at 
Y,, = 2.5 fm. The eigenvalue spectrum of P2 is shown in Fig. la, where a second 
branch of the spectrum is evident in the second quadrant. Fig. la also shows the 
spectrum of case P3, where the node is in V, and not in V. Case P3 has only one 
branch in its eigenvalue spectrum, but real and imaginary parts have a similar 
magnitude and therefore the descent into the complex plane is much steeper than 
for cases Pl or P2. 

The evolution of the second branch in the spectrum for cases similar to P2 was 
studied by systematic variation of V. Table I gives parameters and node location for 
the cases Ql to Q12 which all have a fixed potential V, similar in shape to V, of 
PI, but displaced by -0.3 fm towards smaller radii. The evolution of a second 
branch in the spectrum is shown in Fig. lb, where initially (for Q3) there is only 
one branch in the spectrum in this region of the Argand plane. As the node Y,, in the 
potential p moves towards smaller radii, the volume of V in the interval r E [0, r,], 
where v(r) < 0, decreases and the distance between successive eigenvalues on the 
first branch correspondingly increases. Thus Q12 has approximately half the num- 
ber of eigenvalues remaining on this branch compared to Q3. When r,, = 4.03 fm for 
Q4 an eigenvalue has appeared in the first quadrant far from the origin and moves 
closer to the origin as r,, decreases. Similarly, other eigenvalues appear in the 

581/69,‘2-5 
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FIG. 1. (a) Argand plot of eigenvalues for cases P2 and P3 of Table I with I= 0. Case P2 has a 
second branch in the spectrum whereas P3 does not. The eigenvalue spectrum of case Q9, where neither 
V, nor B has an imaginary potential, differs only slightly from that of case P2 shown here. (b) Argand 
plot of eigenvalues for cases Q3 to Q12 of Table 1 with I= 0. The spectrum of Q3 is shown by the opa- 
que triangles. For the cases 44 to Q12 the branch for which Re(r) is positive lies on the same curve as 
that for case 43 with a small but non-zero value for Im(a). However, the separation between eigenvalucs 
on this branch increases from case Q3 to Q12 as described in the text. The other symbols show eigen- 
values on the second branch of the spectrum in the first and second quadrants. Their hierarchy on this 
branch is labelled by j in the symbol key. The points furthest from the origin on each curve are labelled 
by the case for which that eigenvalue first appears. Each curve shows the trajectory of an eigenvalue as P 
approaches Q12 in the increments listed in Table I. The first live eigenvalues of the second branch of the 
spectrum for Q12 are the trajectory end points closest to the origin. 
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second quadrant as shown in Fig. 1 b, and approach the real axis from large 
distances as yc, decreases. Thus, case Q12 has two distinct branches in the eigen- 
value spectrum and each contains a similar number of eigenvalues. Such results are 
also found for I= 4,6 and 8, but are not shown here. 

The growth of the second branch of the spectrum corresponds to the increase in 
volume of P in the interval r E [r,, a], where V(r) > 0. This behaviour for the non- 
self-adjoint problem of the present study is the analogue of the simpler example of 
[18]. In the latter case negative and positive branches of real eigenvalues are 
present if the weight function F is indefinite and has nodes or “turning points” (see 
[ 191 for papers by F. V. Atkinson and D. Jabon, B. Curgus and H. Langer, 
J. Fleckinger and H. El Fetnassi, M. L. Lapidus, and H. D. Niessen). The effect of 
the non-self-adjoint boundary condition is to rotate the respective branches into the 
complex eigenvalue plane away from the real line. An interesting interpretation has 
been proposed by Kaper et al. [2022], who made case studies of some simple 
examples. These authors proposed [21] that eigenfunctions corresponding to eigen- 
values on the respective branches of the spectrum form two separate bases of the 
two Hilbert spaces of functions defined on the two intervals divided by the node in 
V. This proposal and its consequences are discussed further in Chapter 4 of [4] and 
are also the subject of further study in an application to the Quantum Scattering 
case [23]. 

A referee of the present work has suggested a simple argument which develops an 
understanding of how two spectral branches are possible. For case P2 of Table I the 
first eight eigenvalues are given in Table II. Since V has no imaginary part, the 
potential sum V, + c(,~ P has a real part which is negative at the origin if r,, has a 
positive real part. This is the case for eigenvalues j= 2, 3, 4, 6, 7 and this potential 
sum also has a real part which is positive for r 3 ro. This positive barrier region 
determines the character of the eigenfunction. If the barrier has a height which is 
less than the energy of the scattered wave, as is the case for ,j= 2, then the eigen- 
function is oscillatory for all r. However, if the barrier height is greater than the 

TABLE II 

Eigenvalues for Case P2” 

.I N,? RedI Imaginary Magnitude 

1 28 -0.696160 - 1.999404 2.117134 
2 32 4.306271 - 2.858216 5.168503 
3 40 8.066303 10.701471 13.400997 
4 42 16.826706 - 1.018691 16.857513 
5 42 - 19.532981 23.686633 30.701693 
6 50 37.011024 -0.502557 37.014436 
7 58 62.892853 -0.425780 62.894295 
8 48 -81.657069 33.884346 88.408290 

” The second column shows the matrix size required for each eigenvalue to produce convergence to 
the number of significant figures tabulated. 
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incident energy, which is the case for j > 4, then the eigenfunction is monotonic in 
the barrier region r > r. and oscillatory for r < ro. A typical example of this 
behaviour is shown in Fig. 2a forj= 6. The converse case corresponds to the second 
branch of the spectrum, where c(,, has a real part which is negative and the potential 
sum has a resultant real part which is positive at the origin. This is the case for 
eigenvalues j= 5 and 8 while for j= 1 the real part of the potential sum is not yet 
positive. Since eigenvalues increase rapidly in magnitude the real part of the poten- 
tial sum also increases in the region r < r. but still approaches zero as r approaches 
r. and then becomes negative when r > ro. Consequently, the eigenfunction tends to 
be small or monotonic for r < r(, and oscillatory for r > ro. The example ofj= 5 is 
shown in Fig. 2b. The results of Fig. 2 are typical of the larger eigenvalues and give 
a clear indication of how two separate bases arise corresponding to the two regions 
of r on either side of r,,. The above argument can be expanded to include the 
consequences of the oscillatory imaginary part of the potential sum. 

In studying the evolution of the spectrum for cases Ql to Q12 it was noted that 
enhanced numerical convergence occurred for I= 0,4, 6 and 8 when 2 < r. < 3 fm, 

- .-~~r~ .r-~ ] -~ 

I: 
T- ---I T 

2 3 5 6 7 

PAOIUS (FM: 

FIG. 2. Eigenfunctions of case P2 with I= 0 corresponding to (a) j = 6 and (b) j = 5 for a matrix 
size N,,, = 64. The real part is the unbroken line and the imaginary part is the dashed line. Also shown on 
the top of each frame are real and imaginary parts of the eigenvalue as well as the magnitude. 



GENERAL MATRIX EIGENVALUE PROBLEM 333 

; 
E 0 

0 10 20 30 40 50 60 70 / 

ORDER OF MATRIX N,,, 

FIG. 3. Magnitude of eigenvalues for I = 0, 4, 6 and 8 as a function of the matrix order N,, required 
to produce convergence to four significant figures for case P3 of Table I. 

namely, cases Q7 to Ql 1. The enhanced convergence consisted of eigenvalues of 
magnitude up to 200 being computed correctly to four significant figures for matrix 
sizes ~60. This is in contrast to the convergence behaviour of cases such as Pl dis- 
cussed above. This improvement in convergence is a consequence of the right-hand 
side of Eq. (1) vanishing when P= 0 at the node r,,. This imposes a constraint on 
the matrix, namely Au = 0, which all eigenvectors must satisfy at the node, in 
addition to the two boundary conditions. This constraint is present only when the 
node in v is present and leads to significant gains in convergence when this node is 
in the vicinity of the point of inflection of V,. 

For case P3, Fig. 3 shows a plot of the magnitude of the eigenvalues against the 
matrix order required to produce convergence to four significant figures. The initial 
slope for N,,, 6 40 is 4 and increases sharply to 15 for N, >, 40. This result is sub- 
stantially better than the 2.7 obtained for cases such as Pl, discussed above. 
Therefore the result shown in Fig. 3 for case P3 represents an improvement in con- 
vergence of the eigenvalues by a factor of two to live over the results obtained for 
cases like Pl. 

IV. L, ERROR FOR EIGENFUNCTIONS 

If u,,(r) is the sum to infinity in the right-hand side of Eq. (2) and u~,~)(Y) is the 
sum to N terms, then the L, error is defined as the norm of U/,(Y) - u!;“‘(u) in the 
N-dimensional Hilbert space with the inner product defined in Eq. (22) of [lo]. 
Thus 

-q(Q)N = /lu,,- 4;“‘ll 

(7) 

which follows from the properties of Chebyshev polynomials. It is implicit in the 
truncation of the summation in Eq. (7) at n = N, that the coefficients obtained from 



334 DELIC, JANSE VAN RENSBURG, AND WELKE 

the R algorithm of rank N,, are the exact Chebyshev coefficients. In view of the 
results of [lo] this is the case if N,,, is sufficiently large. In the present application 
the coefficients hj: are complex numbers and therefore the number defining Lz is 
complex. However, since only magnitudes are significant in measuring error, the L, 
error is taken as the square root of the modulus of the term in cusped parentheses. 
This procedure obviates the need for showing both real and imaginary parts of the 
L, error separately. 

The L, error is a concise measure of the error remaining on truncation of the 
summation after N terms. It provides a more convenient measure of the error than 
does inspection of the error curve as was done previously [lo]. However, the L, 
error as defined in (7) does not contain the Y’+ ’ term of Eq. (2). Therefore, the 
same magnitude for Z,$(LZ)~ for differing I could imply a deterioration in the error 
curve for increasing 1, but for fixed 1 a comparison of L, errors in meaningful. 

It will now be shown that the L, error is not directly correlated with the number 
of nodes in the wave function. This is illustrated in Fig. 4, which compares the L2 

I 
P1 iii 14.43 -6.07 2 15.66 
P7 ” 17. 01 -0.5026 37.01 

3. 14 -57.66 72. 01 

FIG. 4. (a)The log of the L, error of Eq. (7) (normalised to zero) for the eigenfunction 
corresponding to eigenvalue j= 2 with I= 0 for cases Pl (squares), P2 (open circles) and P3 (opaque 
circles). The symbol key gives real and imaginary parts of the eigenvalue as well as the magnitude. (b) As 
in (a) for j= 6 with I=O. Note the change in scale in the abscissa. 
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error for I = 0, j= 2 (part a) and j = 6 (part b) for three different cases, Pl, P2 and 
P3. The larger the value ofj, the larger is the number of nodes in the wavefunction 
and also the magnitude of the eigenvalue. The three cases are normalised to zero at 
N = 0 and in each case the error decreases rapidly. It is expected that eigenvalues of 
larger magnitude require more terms in Eq. (2) to produce the same error in the 
eigenfunction as do eigenvalues of smaller magnitude. This is due to the fact that, in 
general, larger eigenvalues correspond to eigenfunctions which have more 
oscillations inside the range of V, compared to eigenfunctions of smaller eigen- 
values [lo]. Figure 4b shows the L, errors of I = 0, .j = 6 corresponding to the same 
cases as those of Fig. 4a for ,j = 2. The ratio of magnitudes of the eigenvalues j = 6 
and 2 is > 10, but the N value required for the same L, error m 10 ’ only doubles. 
In Fig. 4b, a comparison of cases Pl, P2 and P3 shows that while the magnitude of 
the eigenvalue for j= 6 approximately doubles from one case to the next, the size of 
N for the same L, error increases slightly for P2 and is the same for P3. Therefore, 
for fixed N, a prescribed L, error in the eigenfunctions is maintained in case P3 for 
complex eigenvalues of much larger modulus compared to case Pl. 

V. NUMERICAL STABILITY 

In this section the L, error will be examined as a function of the size N, of the 
matrix to be diagonalized. Since N,, is the upper limit in the sum of Eq. (7) N runs 
from 1 to N,. One would expect that the L, error does not depend on N, unless N 
is close to N,. This is indeed the case as is shown in parts (a) and (b) of Fig. 5. 
However, for N, = 54, one of the three diagonalization routines used fails to reduce 
the L, error as N is increased, as is shown in Fig. 5c. 

In the variation of V described in Section III it was found that the first two eigen- 
values can have the same magnitude and thereby differ only in phase. This situation 
resulted in reduced accuracy in the R-algorithm of [lo] and is thus a suitable case 
for investigation of stability in eigenvalueeeigenvector software. For this 
investigation the potential V,, was that used in cases Ql to Q12 of Table I while p 
was chosen such that the magnitudes of eigenvalues j = 1 and j = 2 agreed to eight 
significant figures. The corresponding parameters of the real part of r were V= 83.5 
MeV, y=O.4082 fm-‘, c,=O.3, c,= -0.013491547 fmp2, c,=O fmm4, with no 
imaginary part. The eigenfunctions generated from the eigenvectors for ,j= 1 and 
j= 2, while similar, are linearly independent, since they differ in the occurrence of 
an additional node in the imaginary part. 

Three different diagonalisation routines were then used to investigate for this case 
the L, error of the first six eigenvectors and the convergence of the corresponding 
eigenvalues as a function of the matrix order in Eq. (3). The matrix diagonalisations 
of Algorithm R [lo] were performed using the Matrix Eigensystem Routines of 
EISPACK [24]. This package offers two ways in which eigenvalues and eigenvec- 
tors of a complex general matrix may be computed. The first path (subroutines 
CBAL, COMHES, COMLR2 and CBABK2), referred to here as the LR path, uses 
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FIG. 5. Log of the L, error of Eq. (7) for eigenfunctions j= t to 6 with the choice of potential 
parameters given in Section V. The symbol key gives real and imaginary parts of each eigenvalue and the 
magnitude. The matrix order in the diagonahsation of Eq. (3) is given by N,. The results of the LR path 
correspond to (a), (b) and (c) while (d) is for the QZ path. Note that the Lz errors for j = 1, 3 and 5 are 
superposed. 
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N 

FIG. 5-Continued. 

stabilised elementary similarity transformations. The second path (subroutines 
CBAL, CORTH, COMQR2, CBABK2), referred to here as the QR path, uses 
unitary similarity transformations. The third routine used was the QZ path of 
Moler and Stewart [25]. While both the LR and the QR paths require the 
R-algorithm of [lo] the QZ path does not since it diagonalises matrices R and H 
simultaneously. The QZ path is available in two versions: one is part of the IMSL 
subroutine package [26] (subroutines EIGZC, ELZHC, ELZVC, UERTST, 
UGETIO) and the other is part of the NAGLIB package [27] (subroutines 
A02AAF, A02ABF, A02ACF, F02GJF, F02GJX, F02GJY, F02GJZ, POlAAF, 
X02AAF). The calculations reported here used the former, but a comparison with 
the latter was also made. 

Figure 5a shows the L, error of Eq. (7) as a function of N, where, however, the 
hi(a) result from the diagonalisation of a matrix of dimension N, = 34. Figure 5b 
corresponds to the case N, = 44. The L, errors of all the odd-numbered eigenvec- 
tors (which are numbered according to increasing eigenvalue magnitude) are super- 
posed. For the even-numbered eigenvectors, the larger the magnitude of the 
corresponding eigenvalue, the larger the matrix size required to obtain a prescribed 
value of the L, error. Accuracy is limited to log,,(L,) > -7 because the choice of 
Sommerfeld parameter (see Section IV of Ref. [lo]) results in an error in the boun- 
dary condition of order lo-‘. The LR path fails to reduce the L, error as N is 
increased for N,,, above approximately 50. The failure is due to error propagation in 
the LR path and is particularly acute for N, = 54 as is shown in Fig. 5c. This 
problem was not observed (to within the boundary condition error) in either the 
QR or QZ path. The results of the latter paths for N, = 54 are shown in Fig. 5d. 

Apart from the L, error, another method of measuring numerical accuracy in 
eigenvectors for a fixed N,, and also stability as N, increases, is by inspection of 
the sum 

zy;Y’(r)= zr b;(a) T,,(x) (8) 
)I = 0 
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(for N= N,) at the origin (X = 0) and the truncation radius (x = 1). In such a com- 
parison the IMSL and NAGLIB versions of the QZ path gave similar accuracy for 
fixed N,, but the NAGLIB path was more stable against increasing N,,. In com- 
paring different routines typical results were that for the first few eigenvectors the 
LR, QZ and QR paths gave, respectively, 5, 6 and 7 (often 8) significant figures. 
Similarly, in the calculation of eigenvalues, the same trend occurred and the 
corresponding significant figures were 6, 7 and -8, respectively. This indicates that 
error propagation is most prominent in the LR path and least prominent in the QR 
path. 

The total CPU time used to solve the complex general matrix eigenvalue problem 
of Eq. (3) was compared for the three different paths. On an IBM 3083E8 processor 
with double precision arithmetic using the IBM FORTRAN VS (Version 2.0) com- 
piler, an equation of the form 

t (set) = aNJI, (9) 

gave good fits to the data for computation times with N, in the range 20 to 80. The 
values of c1 and fl found were, respectively, I.0 x lop5 and 3.9 for the LR path; 
2.2 x 10 m5 and 3.7 for the QR path; and 4.3 x lop5 and 3.0 for the QZ (IMSL) 
path. For matrix sizes N, > 80 the IMSL QZ implementation failed. However, the 
NAGLIB QZ routine did not fail for N, d 120 and the timing runs yielded 
cc=3.1xlO 4 and /I = 2.8. Thus the QZ algorithm is typically an order of 
magnitude faster than either the QR or LR paths. 

Clearly, of the three paths tested here for the complex general matrix eigenvalue 
problem, the QR path (which is also the recommended EISPACK path) yields 
the most accurate eigenvalues and eigenvectors. However, the QZ path is 
more economical in computing time and, in view of its satisfactory numerical 
performance in the NAGLIB implementation, is the preferred path. 

VI. CONCLUSIONS 

This study reported on improvements in the convergence properties of the R 
algorithm of [lo] and investigated the spectral properties of a non-self-adjoint 
Sturmian eigenvalue equation as the two potentials contained in it, namely V, and 
B were varied in a range typical of realistic physical cases. Since the solution 
procedure of [lo] used a Chebyshev series expansion, the present work proposed 
analytical forms for the potential so that the Chebyshev expansion coefficients 
could then be generated with high accuracy by recurrence. 

In cases where either of the potentials I’, or r had a node inside the range of the 
other, convergence for eigenvalues was enhanced by a factor of two to live when 
compared to the case of potentials without nodes. Thus the rate of convergence of 
the R algorithm was dependent on the choice of the complex potential functions V, 
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and P or, alternatively, on the spectral properties of the non-self-adjoint differential 
equation. 

The spectral properties of this equation were investigated by continuous variation 
of the node location for a real potential f? Cases where the potentials V, and v 
were of constant sign had a single branch in the eigenvalue spectrum close to the 
real axis in an Argand plot. But continuous variation of the node location of v 
leads to the systematic occurrence of eigenvalues far from the origin in the Argand 
plane. These eigenvalues migrated towards the origin as the node moved to smaller 
radii and they constituted a second branch in the eigenvalue spectrum. This 
behaviour is the non-self-adjoint analogue of simpler indefinite self-adjoint eigen- 
value problems. 

The error in the eigenfunctions was measured by inspection of the L, error. In all 
the cases reported here the L, error decreased at least exponentially as a function of 
N indicating satisfactory convergence behaviour characteristic of a Chebyshev 
method. For a fixed matrix order a prescribed L, error in an eigenfunction is main- 
tained by the nodal potentials for complex eigenvalues of much larger modulus 
than those of potentials without nodes. 

For the complex general matrix eigenvalue problem which results from the 
method of [lo] a comparison was made of the numerical stability of three widely 
available subroutine paths. The present application found the QR path (EISPACK) 
to be at most stable and accurate. However, the QZ path (NAGLIB), despite less 
accuracy, was also stable and more economical in computing time typically by an 
order of magnitude. 

Whereas the previous study [lo] demonstrated the viability of the Chebyshev 
method for solution of a second order non-self-adjoint Sturmian eigenvalue 
equation, the present work demonstrates advances in numerical performance. This 
method should be a useful tool in the numerical study of spectral properties of such 
equations as it complements and extends the limited analyses of (self-adjoint and 
non-self-adjoint) indefinite Sturm-Liouville problems [ 18-221. The method also 
finds applications in the generation of the basis functions essential to finite rank 
approximations of the non-self-adjoint integral operators characteristic of Trans- 
port and Quantum Scattering theories. 
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